REVISION OF THE GENERA OF PLATYP()IIIDAE (COLEOPTERA)

Stephen L. Wiond ${ }^{1}$

 ed in the disconery of new anatomical features that appear to reflect patterns in phe leseeny for thi famb. The Phats por
 are recognized: (1) Coptonotinace, containing Coptonotini Coptonotus Chapuis, Protohylastes Wiood Scolytotarsus

 Tesserocerini (Platytarsulus Schedl, Votoplatypus Lea, Tesseroeramulus Sohedl. Tesserexertes Samuders = Demicerus Spinola, Tesseroplatypus Schedl, Tesserocephalus Schedli), Spathidicertus Chapuis. Perionmatus Chapuis = = 1sctus

 Crossotarsus Chapuis, Trachyostus schedl, Veotrachyostus Browne. Matyscapulus Schedl $\|=$ Platyscapus beheall

 genera named as new to science derised from the gemus Platypus of beheell 19.2 . The following are men wemera anel their type-species: Peroplatypus (for Platypus trimeatipemis Sclecdl. Dinoplatypus Tor Platupus ctupulatus (Gapuis. Myoplatypus (for Bostrichus or Platypus flaticornis Fabricius). Oxoplatypus for Scolytus or Platypus epuadridentutus: Olivier), Platyphysus (for Platypus obitusus Chapuis), Mesaplatupus for Platypus dentutus Datman. Buplutypus for Bostrichus or Platypus paralle Ius. Fabricius), Epiplatepus for Platypus desceptor W ood and Teloplateppus (for Platypus concimus Blandford). The archaic "scktionen" used hy Sched in his 1972 chassification of this family are chiminated. I key for the identification of genera, a discussion of chatacters, and remarks on phylogent are induded.

Key uords: Platypodidue, Coleoptera, Platypus, revision, taxonomy,

During prepartion of the reecent world catatlog that inchaded the family Platypodidae (Wood d Bright cl992), it was learned with considerable surprise that a systematic review of genera for this family did not exist. This contribution is written in ann attempt to at least partially remedy that situation.

The group had its origin in systematies literature when Falbricius (1792:364) mamed Bostrichus cylindrus from (iermany and assigned it to the non-Limatean Nylophaga in the family Bostrichidae. A year later Herbst (1793:12S) recognized the micpueness of this species and erected the gemis Platypues for it. Platypus was transferred by Latreille (1507:277) to his newly erected subfamily Scolytarii (cmmently Scolytidac) of his family Curculionites. Shuckard (1s.40 [reprinted 1861:64]) established the lamily Platypodidae for it. The group has received a tribe, sulfembily, or family designation in virtually all treatments of the group since 1840. The family
now contains slightly over 1400 species. almost all of which are tropical in distribution.

By 1s6t approximately 17 speecies had been assigned to Platypodidae in Platypus. Tesserocerus. and Gempocerus. Chapuis 15(0.) added seven genera (Cenocephalus. Crossentarsus, Diapus, Mitosoma. Periommatus. Spalhidicerus.s.Symmerus $[=$ Chactasthes] and about 220 species to the family in his classicall Monographie des Platypides. This menosraphs (Chatpuis 18(6i5:22-2:3) contained the first he? to genera msed in the family. It wath hased largely upon mouthparts. (eves, and feature of the prothorax. Species in the lareser enemera were divided into several atrchaice nom-Linmate:m species-gronps that were propethated by Strohmerer (1912, 191 th . Schedl 1939. 1972) and, (o a lesser extent. In sther anthome

Strolnmere 1912 broadened the famil? In
 puisia Duges (= Schedlarius. hut he later placed it in a separate famils. Coptomotidate

[^0]btrohmey er 191-tal a change followed only by Schedt 1939) Strohmeyer (1914b:1s) divided the 323 known species of Platypodidae into two subfamilies loased on the divided Tesserocerinace or undivided (Platypodinae) maxilla. The Tesserocerinate he the on divided into tribes Tesserocerariae (Tesserocerus, Periommatus, Spathidicerus), Symmerariae (Symmernus), Cenocephalariae (Cenocephalus, Mitosoma), and Diapodariae (Diapus) based on procoxal, occular, and fumicular characters. The Platepodinate were divided into tribes Platypodariae (Platypus, Cylindropalpus, Totoplotypus) and Crossotarsariae (Crossotarsus, Stenoplatypus, Mesoplatypus) based on characters of adolominal sternum 8. Strohmeyer perpetnated and expanded the non-Linnaean speeies-groups of Chapuis in his classification of the larger genera.

Schedl (1939) proposed a superfamily Scolytoidea in which he plaeed the families Scolytidae, Coptonotidae (for Coptomotus, Scolytotarsus, Chapuisia), Platytarsulidae (for Platytarsulus, Notoplatypus), and Platypodidate, with no subfemilies indicated, containing tribes Platypodini, Tesserocerini, Cenocephalini, Crossotarsini, Periomatini [sic], and Diaporini [sic]. Schedl's (1972) Monographie der Familie Platypordidae elevated the Crossotarsinae, Platypodinae, Periommatinae, and Diaporinae [sic] from tribal to subfamily rank, but reduced to subfamily rank the Platytarsulinace. The Tesserocerini and Cenocephalini were grouped within his Platypodinae. Schedl 1962) treated in his family Coptonotidae the sencra Coptonotus. Schedlarius ($=$ Chapuisia), and Necopelmus. In his treatment of Platypodidae, Schedl (1939, 1972) perpetuated the nse of the nom-Limatem species-gronps of Chapuis with only minor modifications.

Wiond 197:3, 19.9 6 included the Coptomotinate (Coptonotini, Mecopelmini, Schedlarini) in Platypodidate. Wood (c.1992 in Wood \& Bright recounized the subfimilies Coptonotimat tribes Coptonotini. Wecopelmini, Schedlarinit, Tesserocerinat tribes Diapodini, Tesserocerini), and Platypodinace (tribe Platypodini). I dendrogram that indicates possible phylogenctice reationships among these gronps to once another and to Scolytidae appears in Wood 1982:13). evecept that the Tesserocerinae and Platypodinae are not divided.

While attempting to organize a reasonable arrangement of genera for the world catalog, I observed that some obviously related species had been grouped by Schedl (1972) in entirely different subfamilies, while other unrelated species had been clustered into the same genus, and I recognized that a serious generic revision has not been published on this taxon since the family was first reeognized. The archaie classification then in use was unreat sonable, unwieldy, and based as much on the whims of the taxonomist using it as on phylogeny or evolutionary relationships of the included taxa. This led to a search for charaeters that might be usable in a new classifieation.

Reviell of Characters

The Platypodidae are members of the superfamily Cureulionoidea (Crowson 1955, 1968). They share many characters with other members of this group (Wood 1973, 1986). Within the Curculionoidea they are very closely allied to the Scolytidae with which they share the same broad ecologieal niehe and many similar behavioral patterns. Together these two families share a conspicnous pregular sclerite (as defined by Hopkins 1909, 1911) that is clearly marked by sutures on both sides (Figs. 3-5) and is not similarly marked in any other family of Curculionoidea. Additional characters shared by these two families and those features that distinguish them from allied families are reviewed by Wood (1973, 1986). The feature most familiar to eoleopterists and the one most widely employed in family kevs for separating Platypodidae from Scolytidae is the length of tarsal segment 1 compared to segments $2-5$. In Scolytidae segments 1, 2, and 3 are subequal in length, while in Platypodidae segment 1 is usually about as long as segments $2-5$ combined (Wood 1956:11, fig. 9). However in Protoplatypus (Mecopelmini) segments 1, 2, and 3 are subequal in length, while in Mecopelmus (Hecopelmini) segment I is as long as $2-5$ combined. The remaining species of Coptonotinac are intermediate in their expression of this character (Schedl 1939:381, fig. 3).

The pregula sclerite in Coptonotinae (Fig. 3) is comparatively small as it is in Scolytidae: in Tesserocerinae (Fig, 4) and Platypodinae

Figs. 1-5. Platypodidae sppe, males: 1, Scheellarius mexicamus Chapuis. lateral aspect of thorax showine stranght posterior margin of prothorax (upper arrow) and anaplemal suture of mesothorax (lower arow. 2. Tesserecerve dewalemes Chapuis, lateral aspect of thorax showing strongly procured posterior margin of prothoras armow and abonce of a mesothoracic anapleural suture; 3, Scheollurius mexicanus, ventral aspect of head showing the small presula arrow with its marginal sutures and transverse carina; 4 , Tesserocerns dewalenei, ventral aspect of head blow ines the deep eleft (stippled area at arrow) botween the large pregula and margin of the oral fossa; and 5. Fuplatypus parallehus Fabrims. sentral aspect of the head showing absence of the cleft (amow).
(Fig. 5) it is much larger and very conspienous. In Tesserocerinae there is a conspicuons cleft (Fig. 4, arrow) between the lateral margin of the pregula and the margin of the oral fossat (into which the maxilla moves). The depth of this cleft is usually equal to at least half the length of the pregula (Fig, 4). In Platypodinae this cleft is very shallow to nonexistent and is always equal in depth to less than one-fourth the length of the pregula (Fig. 5). The presence of this cleft is apparently correlated with the division of the maxilla into separate lacinia
and galea lobes (Wood g956: S. fig. (i) : its absence appears to be correlated with the fusion of the lacinia and galeat into one eloment. Due to the parcity of epecimens arailable for studs: Platytarsulus and Votoplatypus were assigned to Tesserocerinate on the basis of the presence of the cleft and were not dissected to determine the character of the maxilla.

In the Tesserocerinac the eve exhihits a departure from the usmal subcirenlar, hemispherieal shape. In Platytursulus. Spathidicerus, and Periommatus the eve may be very large
and rentorm bohedl 19:39:384. fig. 4). In Mecopelmus Coptonotinae) there is a slight modification in that direction (Blackman 194-f:igs. 3-5).

Antemad characters appear to be significant in the carly playetic history of the Platypordidace. The antemal eluh is weakly manked los two strongly procurved sutures in Coptonotus: in the remainder of the family there is no evidence of sutures on the club. Coptonotus has the antemal funcle 7 -segmented (Schedl 1939:380, fig. 2), a feature also shared with Protohylastes and Scolytotarsus. Because seven is the maximum number of segments in the fimicle found in Curculionoidea (Crowson 1955, 1968), that numher is assmed to exhibit the primitive character; any reduction from that number should represent specialization. In Protoplatypus and Schedlarius the funicle is 5 -segmented, in Mocopelmus and Notoplatypus 3-segmented, in Platytarsulus 2 -segmented, and in all other Tesserocerinae and in all Platypodinae it is 4 segmented (Schedl 1939:380, fig. 2). In Coptomotus and Protohylastes the antemal club is more slender and less strongly lattened than in other representatives of the family:

In Coptonotinat the posterior margin of the prothoras (as seen from a lateral aspeet) is dorsoventrally straight to very weakly procurved; the mesepisternum is moderately large and almost flat (Fig. 1). In Tesserocerinate (Fig. 2) and Platypodinate the posterior margin of the prothorax is strongly procurved in the pleural area, the mesepisternm is inflated, or in spectalized generat it may be impressed and varionsly carinate.

In all Coptonotinas and in Diapodini, Tesserocerus. and Tesserocramulus of the Tenserocerinate the mesotergum is normal, that is tramseresely flat or weakly, transwersely consex. In all other Tesserocerinae and all Platypodinate it is armed by a conspiewons, stronely clevated median carina. The presence of this carina represents an ohvious specializatom. In heolytider and Coptonotinace the mesothenacic anaplenmal plemestermat suture is consistently present. This antapleural suture is largely Tesserocerinate or entirely (Platypodinace) eliminated in the higher Plat!podidace.

Characters that might be msed (o) inclicate phylogenetic trends in Platepodinate are limit-
ed in momber: A feature, apparently used here for the first time, is the presence of a groove or impression on the posterior portions of the metasternum and metepisternum for the reception of the metafemur. In the African genera Cylindropalpus, Triozastus, Mesoplatypus, and Doliopygus, the anterior margin of this impression is continuously carinate (or nearly so). In more than half (mostly American species) of what has previonsly been designated as Platypus, the anterior margin of this impression is marked by a series of minute spines, and in the remaining half of Platypus (mostly African and Indo-Australian species) the impression is weak to absent and spines are absent. Exeept for females of a few Ameriean species, this character appears to be a reliable indicator of relationship.

The visible abdominal stema in Platypodidae exhibit rather limited, but remarkable, variation. The primitive structure appears to be five horizontal, marmed segments that rise little, if amy, to meet the apex of the elytral declivity. As the male declivity shortens (or atrophies) in some groups, the abdomen ascends gradually to abruptly to accommodate the change. In Diapodini (Diapus, Genyocerus) this ascent is almest entirely accomplished by visible stemum 5 as it becomes vertical and moderately to remarkably concave (This enables males of these genera forcefully to expel frass from the entrance hole 2 m or more from the host tree). In Mesoplatypus and Doliopygus a pronomed transverse carina oceurs on visible stermum 2 (Scheell 1972:149, fig. 39); this enables stema $3-5$ (at least in Doliopygus) to become vertical and concave and to function much as does sternmo 5 in the Diapodini. Less remarkable and less extensive variations oceur on sterna 3 , 4 , or 5 where a tramsverse pair of moderate to elaborate spines (Wood 1966:47 [fig. 6]. 67 [figs. 22-24]) arm one of these segments (sternum 3 in Myoplatypus, sterntm 4 in Oxyplatypus, sternum 5 in Platyscapulus).

The protibia is somewhat unform in the family except in primitive genera. It characteristically has a teminal mucro and is amed on the posterior (or lateral) face by one or more transersely carinate, coarse rugae. In fensale Crossotarsus, Trachyostus, and Neotrachyostus, and in at least two species of American Megaplatypus, these rugae are broken up and reorganized into mumerous, confused
gramules. The socketed denticles (derived from setae) found in most Scolytidae (Wood 1986:11, fig. 10) are makown in Platypodidate. The tibial denticles of Platypodidac are trane spines that function in gripping tumel walls. The simplest form appears to be that of Protohylastes (Wood 1973:56, fig. 25). Other Coptonotinae may have one lateral spine or carinate ruga; higher genera have two to nine rugae (Wood 1973:86, figs. 25-33. Schedl 1939:379. fig. 1). The rugat are not akays consistent in position and form in the higher genera and must be used in classification with cantion.

Tarsal segment 3 is slender and cylindrical in almost all Platypodidace (Wood 1956:11, fig. 9). In the Coptomotinat genera Coptonotus. Protohylastes, Scolytotarsus, and Schedlarins segment 3 (Schedl 19:39:351, fig. 3) is broad and strongly bilobed as in primitive Cureulionoidea.

The spines aming the male elytral declivity are truly remarkable and almost endlessly diverse within the Platypodidae. However, as groups are segregated on the basis of other characters, the constancy and usefinmess of these spines and patterns of spines become apparent. Greater knowledge of Platypodidae pairing and mating behavior would probably increase our understanding of the significance of size and position of these spines.

It is generally understood that all Platypodidae (except Protoplatypus) are monogyous, and in all species the male initiates the fomation of a new parental gallery system. The female, consequently, assumes the primary responsibility for the identification and aceepptance of a male. Presmably, for this reason, the male posterior extremities exhibit remarkable characters, while the femades exhibit few, often very subtle, distinguishing features. Perhaps the most remarkable female featmes are the dehiscent mandibular appendares of the Diapodini (Roberts 1993) that are used briefly for tactile communication with the male at pairing and/or mating and are then discarded. A few other femates that possess remarkathe frontal characters apparently use those features in caring for the eggs or larvae (Wood 1986:4, fig. 2). This is an area where very little factual information is arailable. The myeetangia pores on the pronotum of many female (and a few male) Platypodidace appear to follow distinguishable patterns in some groups.

These patterns appear more constant and less diverse than previous nsage might susqest.

The three esemera of Coptonotinate studied in the ficed by me lave habits more nearly like Scolytidae than like other Platypodidate. In Schedlarins (Wiond 195T), parent adults make bones eqge tumels in the xylem: coge niches are randomls formed on all sides of the bumed into which the egess are placed, ome in cath niche, and packed in frass. The lanvere form long, independent, winding tumnels in the xytem. Atthough fimgal decat in the vicinit? of boring activity of both adults and larvace was obvious, there was no ambrosial mecelium growth on the walls of adult or larval mines. Adult Mecopelmus form a simple cave tunnel. about 1 (em in dianneter ancl $1-2 \mathrm{~mm}$ deep), at and slightly below the cambinm resion of their host. In the frass of this chamber the female deposits a cluster of one or two dozen eggs. The first- and seconel-instar larrae feed on this frass and then bore individuad mines in the cambium region as they radiate ont from the central chamber. There was no evidence of mycelial growth in the mines at 20X masnification. Protoplatypus parent adults formed radiate timmels (with $3-5$ egg galleries in eated. similar to those of Pityophthorus) in the cambimm of their host, complete with muptial chamber, eqg galleries, cege niches, and individual larval mines. Dycelial growth was met evident at 20X masnification. Whl other observed Platypodidace (Tesserocerinate and Platypodinace are aylomscetophaqeous.

Pasmem

The Platepodidae and Scoll tidare are wer dosels related to one another so mach so that four of the sis genera of Coptenotinate conld be assigned to cither family withont serionn conflict. The most closely allied groups within the Scold tidae to the Coptonotinate. Lownerer: appear to be in or near the Carplaedicticini or possibly the Dryococtini of the beohtidac. rather than the superficially smilat triben in What has been regarded as the more primitive Hylesininac. The Platepodidace appear to be the first of ceight pheletic linces within the Platypotidac-Scoly tidate group to adopt the whomecetophagons habit. This shift in adaptive specciadization had a profomed impact on form and function within the Platypodiclare
that separated them rather sharply from the seohtidace

Lew detailed anatomical studies have been based on members of the Platypodidate, and, for the most part. those that have been made were based on the accessible, more specialised representatives.

It is almost minersally agreed that the Platypodidate-Scoly tidae are members of the Curculionoidea (Crowson 1955, 1968:15-166, Wood 1973. 1956). Exactly where these families fit within the Curculionoidea has been the subject of much discussion and disagreement. Their traditional placement within (Crowson 1955,1965 , as subfamilies) or adjacent (as families) to Curculionidae is questioned by me (Wood 1973, 1986). Their placement anong the higher Curculionoidea is substantiated by the presence of only one median, gular suture (Wood 1986:6, S); however, the very short length of this suture in Platypodidae is a departure from most other Curculionoidea and conld have significance. The comparative positions of the mandibular condlyes, including conspicuous reduction of the liypostomal area, also sets the Platypodi-dae-Scolytidae apart from other Curculionoidea, particularly the Cossoninae (Cur(anlionidace) to which they are supposed to be closely related (Wood 1986:10, fig. 8). The troly imique character of the Platypodidaescolytidae is the conspicuous pregular sclerite that is clearly marked on both sides by sutures (Figs. 3-5), a feature that is shared by no other family (Wood 1956:6-8). In Anthribidae and Vemonchidae the lacinia and gatea form separate dements on the maxilla. Among those Curculionoidea having only one gular suture, He maxilla is smimarly divided only in some Attelabidae: some Rhynchitidate, and the sub)family Tesserocerinate of the Platypodidae Wood 19s6:S, fig. 6). No member of the Curculionidate shares this character. The loss of the mesothoracic amaplemal suture in Tesserocerinate (Fig. 2) and Platypodinate appears to hase oceurned entirely within the Platypodidate because it is present in all Coptonotinate lise 1 and in all Scolytidace. Browne (1972) reported urequmphi-like structures in larrae of twos spee ien of Ufrican Platyporliclae; if correct. this womld be the only known occurrence of these structures in Cimenlionoidea. The true homoloes of a labrum-like structure in Cheetastus Inood 1956 : F fige 2 and other
female Tesserocerini has not been clarified. Evolution within the Curculionoidea is obviously much more complex than published simplistic explanations acknowledge. Obviously many unanswered questions remain that must be answered before reasonable explanations are found.

To summarize the above, it appears that the Platypodidae-Scolytidae represent a distinct phyletic line of Curculionoidea having one gular suture and that this line is independent from the Brenthidae-Rhynchitidae-Curculionidae line of specialization.

Phyletic trends within the Platypodidae are somewhat unclear. The six genera of Coptonotinae (represented by mine rare species seattered on four tropical contenents and New Guinea) appear to represent relict remains of a once much larger group. All lack the median mesonotal carina once thought to charactorize all representatives of this family, and all have the anapleural suture on the mesopleuron. Four of these genera (Coptonotus, Protohylastes, Scolytotarsus, Schedlarius) have tarsal segment 3 broad and bilobed. None of the six has the antennal fumicle 4 -segmented as it is in all but two genera of the remainder of the family. However, none of these six genera has the maxilla divided into separate lacinia and galea. The three genera for which habits are known all lack the xylocycetophagous habit. Of these six genera, Coptonotus and Protohylastes are closely allied to one another and approach the Scolytidae more closely in structural detail than do the other four: Schedlarius appears to be the most closely allied to other Platypodidae of these six. Protoplatypus and Mecopelmus are allied to one another but appear to represent an independent evolutionary experiment with no close alliance to any other group.

The Tesserocerinae are characterized by the division of the maxilla into separate lacinia and galea elements (Wood 1986:S, lig. 6) and by the accompanying cleft between the pregula and margin of the oral fossa (Fig. 4). This feature suggests a relationship to the most primitive Curculionoidea families. Within the subfamily, the Diapodini (Diapus, Genyo(cerus), Tesserocerus, and Tesserocromulus lack a median carina on the mesotergum. The Diapordini also have the procoate widely separated, a primitive leature, but the mycetangia
pores on the pronotum and the highly specialized abdominal stermum 5 represent extreme specialization. Platytarsulus (2 -segmented) and Notoplatypus (3-segmented) have a reduced number of segments in the antennal funicle. These six genera have the protibia more slender and with fewer transserse, carinate rugate on the posterior (or lateral) face. They probably represent the more primitive clement of the family after family characters were firmly fixed.

The (a) Diapodini, Platytarsulus, and Notoplatypus are exclusively Indo-Australian in distribution (except for one specie's of Diapus recently introduced through modem commerce into Africa) and each is without a close living relative: (b) Spathidicerus (Indo-Australian) and Periommatus (African) are obviously derived from a common ancestor and are closely related to one another: (c) Tesserocerns and Tesserocramulus (both tropical American) are also allied to one another; (d) Chactastus (African), Mitosoma (Madagascaran), and Cenocephalus (tropical American) are also allied to one another, but are quite distinct from other Tesserocerini. It appears that groups a, b, and c have evolsed entirely: since the early Tertiary separation of Africa and South America. Only group d exhibits a phyletic imprint of pre-Tertiary development. It is concluded, therefore, that the evolution of the Tesserocerinae has been rapid and that pre-Tertiary representatives of this subfamily must have been radically different from modem taxa.

In the Platypodinae (Platypodini) four lines of development are secn: (a) Platypus (largely African to Indo-Australian), Treptoplatypus (Indo-Australian, Oriental, NW North Ameri(an), Peroplatypus (Indo-Australian), Dinoplatypus (Indo-Australian); (b) Crossotarsus (Indo-Australian), Trachyostus (African), Neotrachyostus (tropical American); (c) Platyscap)ulus (tropical American), Myoplatypus (Ameri(an), Oxoplatypus (American), Platyphysus (tropical Anerican), Megaplatypus (tropical American), Euplatypus (mostly American, some African, Madagascaran), Batocis (IndoMalayan), Epiplatypus (tropical American). Teloplatypus (tropical American); (d) Cylindropalpus (mostly African, 1 Madagascaran). Triozastus (African), Mesoplatypus (African), Doliopygus (African). Group a oceurs primarily in the Indo-Austratian area. with slight,
recent invasion of trica. and one species of mecertain allinity in tropical America. Gronp b appears to hate ocernpied the Indo- Anstralian, Sfrican, and South American areas before the separation of Dfiea and South America and suggests a pre-Tertiary origin. (Broup e is primarily American cacept for Batocis that is of uncertain affinity, and Euplatypus that appears to hate had carly interaction with Madagascar and a later exchange from Madagascar to Africa [The modern circmomtropical extension through commeree of paralleluss from America is ignored]. Group d is exclusively African exeept for one species that reached Madaquscar from Africa rather recently: Based on these data, it appears that evolution of the Platypodinate has been rapid since the early Tertiary separation of Afriea and South America and that pre-Tertiary taxa must have been structurally very different from modern species. Pre-Tertiary Platypodinae must have resembled the Coptomotinate much more than has previonsty been supposed and suguests an origin no carlier than that of flowering plants (Lower Cretaceons).

Sistevitic Section

Becanse this represents the first real examination of generic classification in Platepodidae since the family was establishere some radical departures from previous treatments are recommended. Foremost anong these is the abandomment of the arehaic practice of employing madefinable species-groups or infrageneric gromps below the genus level and above the species rank. Schedl (1972 employed 62 of these groups in his treatment of the gemus Platypus. This change made it necessary to retrieve a mumber of generice mames that hate previonsly heen placed in synonymy and to name several others. Although this will canse some intial confusion, it should ultmately conhance communication on this family:

The treatment of enenera following the kes is brief exeept in the tribe Platypodini sub)family Platypodinae) becanse of the significant changes introduced there. The treatment of the six genera of Coptonotinate is virtually unchanged from previous usage. The signifi(ant changes in Tesserocerinae inchode 1) the transfer of Platytarsulus and Notoplatypus into
this mblam ils fom Platypolinae. and (2) the restoration of Chaetastus. Cemocephalus. and Witosemer to full qeneric rank.

This stend was hased on my personal collection of oxer 100 species of Platypodidae anel ms examination of more than 400 other species. Because approximately half of the hnown apecies in the family were not seen by me. it is ohsions that adjustments in the proposals made here will be needed in the future.

The monobasic genera Crossolarsimulus shedl 1972:S4-57 and Spathicramuloides Schedl 19-2:71) are unknown to me and, consequently. were not included in this study:

Key to the Genera of Platypodidace

1 Posterior margin of prothorax as seen from lateral aspect straight to weakly procunced in plemal area Fie. 1): mesepisternum moderately large, almost flat; mesotergum flat to broadly. transsersely arched, without a comspiemons, atute median carina, sentellum rising abruptly to elytral surfate: pronofum never with mycetangia grooves or pores: prequla small, bearing a tramsverse carina: eves sometimes large. eloncate. Ilat: antemal scape slender. club)-shaped; procoxae smaller, mestally on middle third of prosternum length; tarsal segment 1 short except clongate in Mecopelmus. Schedlarins: : anaplenral suture on mesothorax present Fig. 1): xylophagons or phloeophagous: Coptonotinae:

- Posterior margin of prothorax strongly procurned in pleural area Fig. 2): mesepisternum large, msnally inflated concave in some Tesserocerinace : pronotum often with conspicuons grooves on pores extending into myertangia: mesotergum usually bearines a conspicuons median carima ablosent in four eneneral scotellum, if present, rising Eradhally usually carinate and apically printed: procosade enlarged occupsing posterior half of segment: pregula moderately (0) wer laree uhbally that, never with a tramsere carinat antemal seape varioush moditied exes astally romeled hemisplerfral tarsal exement 1 dwass clongate. usanally lones than uegments $2-5$ combined: amaplewal suture on mosothorax larecle or conterely abont 1 ig 2 whomecotophagons.
 smatl. protemur thene slemeler at hast 2.6 times as long as wade. protiln mare ve neter and almost as long as forion presula with a higher median carma al buc from lon tramserse carina and termbathes cephadat in a small. blant spine speck hare ot than 3.5 mm , stouter, darker in color $1(0 \mathrm{opton}$ ontini.

3(2). Eye very large flat, subreniform: antenual (lub inconspicuously marked by two trongIy procurved, subangulate sutures, these weakly indicated by grooves and setae: color almost black: tropical America; 3.2 or 9.0 mm

Coptonotus Chapuis

- Ese short sobeircular to oval in ontline. less than 1.5 times as long as wide; antennal clab ummarked by sutures; Africa or Australia.

43. Eve oral, about 1.5 times as long as wide: protibia very slender, its apex armed by a small median spine, a minor spine on each side near apex; body and pronotum hylesinine in form; Australia; 9.5 mm .

Protohylastes Wood

- Eye subcircular hemispherical: protibia distorted by a large spine near its middle; body and pronotum platypodine: Africa and Australia: $4.5-4.9 \mathrm{~mm}$. Scolytotarsus Schedl
52). Protibia small, with a terminal mucro and with or without one spine on lateral margin: tarsal segment 3 narrow; cylindrical; elytra simple declivity convex, marmed; pale species body less than 2.0 mm : (Mecopelmini)
- Protibia larger. subapically armed on lateral face immediately above tarsal insertion by one transserse. coarse costate ruga; tarsal segment 3 very broad, deeply bilobed: antennal funicle 5 -segmented: elytral declivity oblizuely subtroncate, its margin costate on lower half, amed above by a row of several small spines. its face on interstriac ornamented by numerous small, white scales: Vesico to Panama: xylophagous in Bursera spp.: $4.0-7.0 \mathrm{~mm}$; Schedlarini)
.Schedlarins Wood
65\%. Antemal funicle 5 -segmented, posterior face of club glabrons; eve smaller, finely faceted: aldomen borizontal, costal margin of elytra horizontal or descending to apeex: tarsal segment 1 short subecqual in le noth to 2 or 3 ; aduits polygyous, parental tumels, radiate, in cambium. first-instar larvac form individnal tumels in cambinm; New Cuinea; $1.2-1.5 \mathrm{~mm}$

Protoplatypus Wood

- Anternal funicle 3-seqmented, chub puleescent on both faces; eye larger. coarsely faceted; abdomen distinetly aseending
behind. contal margin of ehtra ascending on apical one-fifth: tarsal segment 1 as lone as $-2-5$ combined: adults monogranos. parental chamber a simple cave, third-instar larvan form independent tmmels radiatine from central clamber in Serjonia spp:: Pamama; $1.4-1.6 \mathrm{~mm}$. \qquad Mecopelmus Blachman
71). Manilla with mesal element clearly divided into separate lacinia and galea; preegula separated on each side from margin of oral fossa by a deep cleft into which maxilla moves) equal to at least one-half presula length. visible pregula caudad from cheft comparatively small: (Tesserocerinate)

Maxilla with lacinia and galea combined into one mesal element: pregula large to very large, deft between pregula and oral lossa nonexistont to shallow, equal to less tham one-fourth pregula length: (Plateporlidae. Platypodini

S7. Procoxac widety separated each coxa wery large, longer than tibia: mevonotun flat or evenly, transwersely arched. without a conspicuous median carina: sentellum rather large, broad: male abdominal sternum 5 subsertical. usually concavely excatated: (Diapodini)

Procoxac contiguous, each coxa shorter than tibia; mesonotum with a conspicuous, acute. median carina except flat, withont a carinal. in Tesserocerns. Tesserocramulus), seutellum small. slender. pointed; (Tesserocerrini

9/5. Anterior face of antemal chul with a mall area or line smooth, shining, ofters weakly elevated: base of female pronotum oceasionatly atso male) with a band of man! mycetangia pores or grooves: scutellam smaller, narrower, often depressed: from more sparsel pubescent in botll seses: newly cmorged femate usually with dehiscent mandibular appendages: Ifricat to Taiwam and Australia; 1. -5.0 mm ..

Diapus Chapuis
Antemal club uniformly pubercent to base: baye of pronotum omamented in median area by few cobarse mycetangia pores, mener with grooves: scutellmm larger, broader. higher: femate froms usually ormamented by tults of very long setac: female dehiscent mandibular appendager usually absent. India to Philippines and Xew Comineat $1.7-4.0 \mathrm{~mm}$. Genyocerns: Motachulak!

10 3 . Antemal fumicte $2-3$-segmented. (dul) with large procurved. glabrous, basal arra extending at least one-half length of club. margins and apical area minutely. chosely pubescent; protibiac anmed by lateral spine at tarsal insertion and one additional sulapical spine or ruga: elytral declivit! gradual.
"oahk armed. promotum atidelatra retuenlate.
 pubencent to base or glabrous area mut h smaller basal onc-fourth. protibia usuall! mone claboratedy amod
 wate, reniform. at leat 211 times an lones as "ade. protibia with wne (tambserace rugd above lateral pine: Bumen to Valata. 4.5 num Platytarsulus schedl

Antemal finicle 3-sequnented. ©r suberr cular. as wide as longe contire: protibiat with at small tuberefe on marsin abone lateral spinc. Anstralia: Eucalyptus spp...5.5-6.3 mun .. Sotoplatypus I.ca
1210. Eycedongate: 1.5 or more time longer thatn wide. almost flat: meseprsternum flatterned to concald? exeasated. its upper and sometimes anterior margin armed bo a fine. conspicuous carina carinat abent in cone Spathidicerus : anterior margin of me wo (o) al cavity acutely carinatc. carima curnine cephatad and ending in margin of mesepisternum: pronotum more slender. $1+10$ times as long as widen precosal pieco on prostemum acutely pointed.

- Eyo subeireular. little if an! longer that "ide. hemispherical: mesepisternum conwes. never amed bs a carina. anterior margin of meserotal casit! never contmand coplatad as a carima: pronotum souter 1.0-1.3 times as fong as wide preconal piece on prosternum olturels ponted promotum and elytra rareh retuculate

1312. Vesomotum almost Ihat. nexer marked la a median carina. cer borter en al to subtraniLular in outline. 1.2:20 time a dons 心 wide. anterion marsin entere Sentropsed species.

11
Seronotum compicmombly armed ba a strongh clesated. acinte Hedoln carna ole ber large. reniform. its ante or marsu broadk emartmate aftentwor or ment
 lustralian ypeck
 least s.0) times a done de wade late iad war-
 posterion unc-third of peosteriber acote a
 notal and stermal marsul - lomale oc que remarhabl! hattemed and broath ate bad mesad doradel. and a a whad pedicel merted one-third scape lenth Irom lase (owta Ruato Conemes. $4.0-42$ min

Iesserocranulus bchedt

L-wher funter speecies, 3.0-4.5 times as long as wide: pronotim narmoty to subacutels rounded on lateral margins, prosternum never with lateral marsin eostate. without a narow, plemal groove between these margins: lemate seape slemeler, with peedied attached mear its apes, a slender, dongate extension in a lew speceies; Mexico (6) Argentima: 3.0-11.0 mm .

Tesserocerus Saunders

151.3 Vesepsisternmathat anarmed by a carina larger speetess or concately excavated and its margin armed by a carima (smaller species); pronotal comstriction (in which protibia moves) shallow, its posterior portion gradual, not extended ventrad. plewal impression mostly below pronotal margin; protibia armed by only two coarse, transverse rugac; Indenessia to New Guinea and Philippines; $4.0-12.0 \mathrm{~mm}$.

Spathidicerus Chapuis

- Vesepistermm ahways concavely excavateel, its margin armed loy a carina; pronotal constriction much deeper, its posterior portion abrupt. with notum extending more ventrad; protibia armed by three coarse, transierse rugae; Afriea; $2.2-5.0 \mathrm{~mm}$ \qquad

16(12). Posterior one-third of pronotum with a transwerse band of mumerous, small, closely plated mycetangia pores; anterior face of metatibia armed by only one transverse ruga; striae more distinctly impressed, punctures clearly visible: female froms impressed from cye to eye central twothiods of impressed area abruptly, deeply: exeavated on a circular area; elytral declivits exmex, rather steep, spines short, rather inconspieuous: larger, stouter species; Afri(a; 3.9)-7.0 mmChatastus Numberg

- Pronotal punctures uniform throughout. myertangia pores not diseernible; anterior face of metatibia armed by there or more transserse rugate; striae weakly if at all impressed. punctures evident or not; female frons variously impressed from eye to eye, withont an abrupt, elecp, central excavation; smaller. more slendor species. 17
17016). Wale elytral dectivity usuatly conves, wery steep, usually not exeavated, spines smaller, if eviclent: lrase of male de divity usually not armed by spines: Cemtral and Soutlo Americat: 2.5-i.2 mm................enocephahus Chapuis
- Male elytral deedisits abually oblicpuely truncate and variously exeavated, spines much larger: base of made dectivits usmatly armed by spines: Matlagascar: 3.7-4.0 mm Vitosome Chapuis
for reception of femur, anterion margin of impressed area never continuously carimate or armed by a row of small spines (one (o)arse nodule present on metepisternum in male of some large Crossotarsus), surface of impressed area with at least some setae; protibia of male armed by about four or more coarse, transverse rugae, female either similar to male or sometimes mostly covered by small, confused granules and usually one or two weak rugae near tarsal insertion; if present on female pronotum, mycetangia pores numerous
- Metastermm and metepisternum near metacosa impressed for reception of femur, anterior margin of impressed area either contimously carinate or amed by a series of small spines (absent in occasional females and in American allies of Euplatypus longu(us), surface of impressed area glabrous: protibiae of males and females similarly armed loy rugate spines on one or more abdominal sterna (couplet 27) a common feature: mycetangia pores variable.

19(18). Male and female protibiae similarly amed by rews of transverse ngae20

Male protibia armed by transverse mgae, female protibia largely granulate, with no more than one or two weak rugae near apex

20(19). Suture at apex of male elytral declivity entire, declivity varionsly convex, with or without armature of tubercles and spines; if present, female mycetangia pores on pronotum numerons; worldwide in most tropical and subtropical areas, only 1 species in America; 2.5-10.5 mm

Platypus Herbst
Wale declivity abruptly truncate, its margin obtuse to very acutely costate on almost a complete circle, apex sometimes strongly, attemately narrowed, deelivital face usually. coneave; mycetangia pores variable.

21(20). Elytral apex of male moderately to exeeedingly attenmate, strongly narrowed to trine base of declivity, dehiscence of suture sometimes small, olsecure, basal margin of declivity usually more gradual, sometimes romoded; India and Australia to Japan and NW North America; 2.4-6.0 mm.

Treptoplatypus Schedl
Make elytral declivity much more broadly truneate, declivital base almost as wide as base of chytra, basal margin abrupt, obtusely to very acutely margined

22(21). Male sutural apex of deedivity msually entire, slightly dohiseent in one species; male elytra not distinctly constricted before declivity, costa at base of dedivity obtuse to sula-
cute, interstrial rows sometimes indicated on upper portion, at least a low setae present, deelivital face largels dull in most species, shining in one; Malaya to New Guineat $2.5-4.5 \mathrm{~mm}$. Peroplatipus Wood

- Male sutural apes modestly to wers strongls, very broadly emarginate; margin at base of male declivity moderately to strongly acute, face of deelivity smooth, shining, glabrons, striae and interstriae never indicated, male. declivity with a distinct constriction slightly anterior to declivital base; India and Japan to Australiat and Micronestia; 2. $5-5.5$ mm

Dinoplatypas Wood
23(19). Wale declivity wery short to aldsent, nsually: subvertical, a row of spines nsually arms base of declivity, venter of abrlomen rising abroptly to meet elytra; male metepisternum of larger species often anned near posterior end by one romeded nodule; India and Australia to Tawan and Ilawatian Islands; 3.6-10.5 mm.

Crossotarsus Chapuis

- Male elytra strongly, more gradually deelivous, venter of adodomen more nearly horizontal on segments 2-5; metepistermum never armed by a nodule. 24

24(23). Ventrolateral margin of male chytral declivity evenly romded, newer serrate or dentate, its basal margin weakly armed, never dentate; male declivity usually consex, sufface dull; female pronotum never with myectangia pores; Africa; 4.8-9.5 mm.

Trachyostus Schedl

- Ventrolateral margin of male declivity variously serrate, dentate, or emarginate, its basal margin varionsly carinate or armed by spines; mate declivital surface subeoncavely excavated; female pronotum with a pair of myeetangia pores near median line on basal half; S Mexico to Brazil; 5.0-7.5 mm.

Neotrachyostus Browne
25(15). Anterior margin of impression on metasternum and metepisternum for reception of femur armed by a series of small, pointed spines (sometimes obsenre or absent in female Euplatypus); American or \atagascar species, four from Africa. \qquad

- Anterior margin of imperession on metasternum and metepisternum armed by a complete or interrupted costa, rarely reduced to one (somewhat pointed) subcostate spine; African species. 31

26(25). Male visible abdeminal stermum 3. 4, or 5 armed by a pair of widely (transversely) sep)arated coarse spines \qquad .27

- Male abolominal stema 3-5 never amed be spines.29

27 (26). Visible male abdominal stermum. 5 armed on a pair of wideh separated spines, male ehtral declivit! sherter. steepere its semtrolatcral angles poond deweloped and projectime little if any: mate interstriace on peosterior half of dise msuall! carimate: promotmon never with mectangia peres in eithere sea small species, 1.9-3.5 mun. Wexien (1) Arsentina ...

Plutyscapulus Schodl
Sisible mate abdominal stermmen 3 or 1 armed ly a pair of widely separated upines: male chytral declivity more gradual, wontrolateral angles more strongly produced: discal interstrian in male never caninate, pronotum on hasal half oftem with a pair of mcetangia pores in female or in lxoth seses

25(27). Visible mahe stermm 3 armed by a pair of spines: male declivity often steceper, shomere. mycetames pores on prometum oflew prescont in fermale or in both sexes: SE US. 1 to Veneracla; 2.0-5.5 min Myoplatypus Wood

Visible male sternum 4 armed by a pair of spines; male pronotum withont mycetangia pores, femate with 1 pair of unusuath large pores; Quercus spp); S L'SA to Chiluahua and Xarit in . Xexico; 3.5-4.5 mm

Oxoplatypus ${ }^{1} \mathrm{ood}$
29(26). Male elytra rathers strongly declivone on posterior one-third declivits varionsly convex or oblifuch impressed, with or without armature: venter of male abdomen resmes onh slightly to mect apex of clytrat

Male efytra descending little if ams hefore apex. dectivity short, subvertical if evident venter of mate abdomen rising more then one-half distance to med aper.

30(29). Tenter of male abramen horizuntal to sternum 5. sternum 5 moderatels to strongly inllated. its apical one-fourth aceendme rather abmpth to meet apes of edsta male. elytral declivity strongh comed, steep. marmed or with small dentiches on interstriate 3. 7. 9) nome on apical marsins mese tengia pores on pronotum newer preacht in either sex: Costa Rica to Brazil: 2.3-1 1 mm

Phatyphysus Wood
Senter of male abdemene rising alment onehalf distance to meet aper of elytrat dectists desconding moderately, often varionsly impressed and armed lon vpines.

31
31(29). Wale dectivit! with wotrolateral ancles wasally formed and modestl! produced their apices newer exceedine apical ntarga at suture. margin between wentrolateral angles frepucotly armed by whe or wore pairs of denticles or serrations: mencetamgia peres on pronotum uncommon in female. rare in male. When present. consisting of
one patr or [marel small chasters: Mexico tor Arventinat 2.3-10.0 mm.......Megaplatypus Wood

Male declinits with viontrolateral angles more stronsh produeed, usually eseeeding apical matem at suthre. projecting process usually more slender and oftern with its apes bi- or trackenth armed, never with serrations or denticles on aptical matrgin botweren processe's: promotum oftern with one pair of mycetangia pores in fermale. less common in mate: mostly Vexico to Irgentinat, a few in Wricat and \adiagasear. parallelus ciremmtropical: $2.37 .0 \mathrm{~mm}$. Euplatypus Wood

Vate decelivity not descending, warmed: male ablominal stermm $\overline{5}$ concate: small. retienlate: vers slender species, 5.0 or more times as loner as wide, upper surfaees msnatIy reticulate; momerous mycetangia pores on pronotum, if present: sexnal dimorphism obscore: Iustralia to Malatya: 1.7-2.4 mm.....

Baiocis Browne

- Less slonder species; scexnal dimorplism conspicuons. mate declivity always with small spines; when present, myeetangia pores limited to one petir: Imerican species....3:3
33.32). Wale declivity with two patirs of serrations on ventrolateral marsin, these sermations astadly conmected by a carina, median patir wotern botlo on apical margin; one pair of myectangia pores on pronotum often prescont: Consta Ricat to Bratzil: $2.5-1.5 \mathrm{~mm}$.

Epiplatypus Wood

- Jate deedivit! with onl one pair of serrations on vontrolateral margin, a čarina estonding dorsad from this spine to a spine on interstriae 3 at base of deeclisity, basal margia at apex of dise usnally armed by small spines on interstriak 1, 3, 5: nucetanGia pores on pronotum never present: S Vexico to Mrg(ontina: 2.2-1.2 mm. Teloplatypus Wood

3125 Vale dodomem with stermum 2 mornal, ster13) rablually asconding from $1-5$, unarmed: deedout de secondiner slialatly to moderately: lemate lroms often batomst coneate
\akf abdennem with sternmon 2 abonommatly Fome armod wr abruptl angled on 2 .
 densely pule secent
 comes. with mommat setation. chetral decelin i-
 tance to mere ascernding abelomers. dectivitad tubereles small, ineonspicenoms femate froms broadty and shatlowly to stombi (on) eatso Vrica. Matdugasear; 2.5-5.5 mm

Cylindropalpus Strohmetyer

Male abolomen lorodedy concave, both transversely and longitudinally, from base of stermum 1 to apex of 5 , impressed area often elaborately pubescent; declivity descending very slightly, its margin armed by spines. interstriae 1 near its apex diverging laterad moderately and descending slightly before its apex; female froms with a pair of small to moderately large concavities in lateral areas between base of mandibles and antennal insertions: Africa: 3.0-1.0 1mm.

Triozastus Schedl

36(34). Male abkominal stermum 2 oftera armed by a pair of coarse, blunt spines, 3-5 ascending and sometimes armed on ont or more of these seemments by small spines; mate dectivity descending moderately, amature rather inconspienous: female frons concateIy impressed: Africa; 3.5- 4.5 mm .

Mesoplatypus Strohmeyer

Abstract

Nale abdominal sternman 2 transterscly carinate, carina moderately to estremely, strongly elevated and either continuous or interrupted near mediam line; dedivity nsually amed on its basal margin by dorsoventrally flattened costae, these costae interrupted at strial intervals, declivity below these spines weak to monexistent; female frons variously sculptured, ofter elaborately ormamented by setae: Africa; $\mathbf{2 . 5}-7.0 \mathrm{~mm} . . .$.

Doliopygus Schedl

Coptonotinae

The classification of Coptonotinae remains as presented in Wood in Wood \& Bright (c1992), containing the following: Coptonotini (Coptonotus Chapuis, 2 Neotropical species: Prolohylastes Wood, 2 Australian species; Scolytotarsus Schedl, 1 African and 1 Australian species); Mecopehmini (Mecopelmas Blackmam, 1 species from Pamama; Protoplatypus Wood, 1 species from New Guinea): and Schedlarini (Schedlarins Wood, I species from Mexico). Mecopelmus zeteki Blackman is known only from specimens collected within 2 km of the Panama Canal. It is quite probable that this species was introduced from another part of the wordd, possibly New Guinca where the only known relative occurs.

Tresserocerivie

The Tesserocerinae are divided into two tribes as presented in Wood in Wood d Bright (c1992): Diapodini (Diapus Chapuis, 39 speceies from India to Australia; Genyocerus Motschulsky [= Diacarns Schedl], 24 species
from India and Sri Lanka to Philippines and New (Ginea): and Tesserocerini.

A divided maxilla into separate lacinia and galea lobes oceurs in the primitive Curcolionoidea (Anthribidare, Nemonschidate) having two gular sutures (Crowson 195.5. 1968, Wood 1986). Among the higher Curculionoidea, those with only one gular suture, divided lacinia and galea lobes ocem onty in parts of Attelabidae, Rhynchitidae, and Platypodidae (Tesserocerinac; Wood 1956:S, fig. S). In all three of these families the taxon containing all species with separate lacinia and galea is given subfamily status. Strohmerer (1912. 1914h) appreciated this fact and recognized the subfamily Tesserocerinae. Schedl (1972) was not a student of erolution and did not achnowledge the existence of this character in Platypodidae.

To the Tesserocerini of Strohmever (1912, $191 \mathrm{th})$ two genera are added here, PlatytarsuIns behedl and Notoplatypus Leat, on the basis of the deep cleft between the pregula and the margin of the oral fossa specimens for dissection of the maxilla were not awalable). The Tesserocerini now contain (Wood in Wood d Brisht (1992) the following: Platytarsulus bchedl (8 species from Malaya and Borneo); Notoplatypus Lea (1 species from Australia); Tesserocramulus Schedl (1 species from Costa Rica to Cayenne); Tesserocerns Sanders (=Damicerus Spinola, Tesseroplatypus Sehedl, Tesserocephahus Schedl) (30) species from southern Mexien to Argentina); Spathidicerus Chapuis (7 species from Sumatra to Philippines and New Guinea); Periommatus Chapuis ($=$ Asetus Nimberg, Setamis Nunherg) (52 species from tropical Africat); Chaetastns Numberg ($=$ Symmerns Chapuis) (7 species from tropical Africa): Cenocephalus Chapuis (13 species from sonthern Mexico and Hispanola to Brazil); and Mitosome Chapuis (=Platypicerus Nunberg. Coccophalonus Schedl) (26 species from Madagascar).

Schedl (1972) did not recognize the Tesserocerinae as a sublimily, but fragmented the group into his Diaporinae [sic], Periommatinae, and Platypodinae.

Platyponinae

Introduced here are radical changes in the dassification of Platepodinate that were fomed too late for inchusion in Wood de Bright
(c) 9992). Foremost among these is the abomdomment of the gemus "schtionen" of Chapmis (1565), Strohmeyer (1912, 191-f1)), and Schedl (1972). This non-Limatean cateqor? wats apparentl! below the rank of subgemon lant abowe the rank of speceies and was used liberatl be Schedl with little objectivil!. These "sektionen" are here replaced by a nex dassification of gemera.

The Platypodinae, as presented here, appear to represent a recent, active, conolntionary explosion in which sharph delineated generic eroups do mot exist. For this reabon all are placed in one tribe, Platypodini. Schedl's (1972:S3) attempt to characterize his Crossotarsini as distinct from his Platypodinac was based on a chatacter (sexmal dimorphism of the protibiaes that did not occur throughont the group be attempted to characterize, nor was it limited to his Crossotarsimi. Another set of characters was meeded to divide his Platypodinare.

On the posterior portions of the metastermom and metepisternmon of some Patepodini is a feeble to wery strong, often glabrome impression for the reception of the metafemurs. The anterior and lateral marcins of this impression may be arned loy (1) a continume carina (African species) or $(2$ a series of mimute spines (American specters, with at fen eastern hemisphere exceptions). Thene Platypordini that lack this impression and its carina or spiness also share other features exenerally not foumd in the other group). It should bee mentioned that occasional fomales American speciess and about a dozen species alliod to Euplatypmes longenhes (hapuis) all ate American speciess lack the impression and apines even thongh the (othemise ckarly belone to the ereneric group with the imperession and spines. Comernch. several of the largest species of Crossotersus have one umall. romoded module on the male metepistermmen although the cleart belong to the sene rice group without the impression or spines. Amone those gronpe treated here as enema that lack the impression and its armature, all amostly females that hate myertangia peren on the pronotum have momerons pores Amone those erencra with the implession and spinctike amature most of those species primarily females with myertangia pores on the pronotum hate only one pair, althonsh a few large Meseplatypus have several, and the few

Banocis with pores hate matny. Ill of those epeceices with meretangia pores on the pronotom and also with a carina on the metaster-num-metepisternum impression (African speces hase many pores.

Platypus Herbst

The semus Platypus Herbst (= Cylindra 1lliger: Stemoplatypus Strohmeyer, Platypimus Schedl) as defined here is ereatly rednced in thes mumber of included species from that listed be Schodl (1972:169-242) and Wood d Bright (cl992). To these synonyms is added Austroplatypus Browne (1971:49), new symomymy. It also appears that Dewlroplatypus Browne (1955:365) belongs here (only females were avalable for study). Neotrachyostus quarlrilobus (Blandford) is here transferred from Neotrachyostus back to Platypus. Platypus taxicornis Schedl belongs here, not in Theppoplatypms where it was placed by Schedl 1972:2.5)

Deschap ber of the Platypodini, as defined in the above key to genera, in which the posterior portions of the metastermm and metepisternmm are not impressed or amed (key couplet 1 Sa) and the protibiae are not sexually dimorphice (key conplet l9a). The male sutmal apex on the clytral decelivity is not dehiscent. Necertangia pores when present on the pronotnm (mostly females) are momerous.

Contexts.-Included here in this group are the following "sektionen" of Platypus as listed Iny ScheodI (1972:169-242): Platypi apirali (1 sp., Fiji), Platypi geminati (3 spp. New Cuineas), Platypi hirtelli (22 spp)., India to Australia and Philippiness), Platypi lumati (15 spp). India to Australial, Platypi me'soadjuncti (3) spp.. Mala! a to New (iuinca), Platypi paraspimulosi (5 spp., Africal), Platypi pseudospmimulosi 12 spp. Nalaya and China to Vеw (:uinear), Platypi pmactati (2 spp)., Inclia to V (an Cinineat), Platypi semiopati (9 spp). Lustralia to Xew Cuineas). Platypi spimulosi 13 spp., Ifric"a. Platypi sulcati (60 spp., Eimroper, India. and Jajpan to Mustraliat). This reduces the Sos spereies of Platypus listed in Wiood de Brishtcelg92, to 121 species.
 Japan and Australia. I spereies quadrilobos Blandford) of (łubious affinits in Costal Ricaa.

Treptoplatypus Schedl

The gemus Troptoplatypus Schedl was based on Crossotarsus trepanatus Chapuis. Schedl (1972:245) also inchaded circulicauda Browne, fischeri Strohmeyer, multiporus Schedl, quadriporus Schedl, and subaplamatus Schedl, all (five) of which are mknown to me. As indicated above, Treptoplatypus taxicormus (Schedl) is here transferred back to Platypus.

Description.-A member of the Platypodini near Platypus, Treptoplatypus is distinguished by the strongly narrowed male elytral declivity that is rather abruptly; obliquely trmeate and dehiscent at the sutural apex. The male elytral apex is usually strongly attenuate, and the male declivity is usually concave. Myeetangia pores on the female pronotum are numerous.

Contents.-In addition to trepanatus, I here transfer from Platypus to Treptoplatypus the species abietis (Wood), australis (Chapuis), biflexuosus (Schedl), micurus (Schedl), soliclus (Walker), and wilsoni (Swaine). It is probable that some (not all) species placed by Schedl (1972:197-199) in Platypi oxyuri should also be transferred here, as well as longipemis Montrouzier (Schedl 1972:196). Additional studies are needed to determine exactly which species should and should not be added to this genus.

Distrabltion.-India and Japan to Australia and NW North America.

Peroplatypus, n. g.

Diagnosis.-This genus is a member of the Platypodini near Treptoplatypus, lut it is distinguished from that genus by the broad elytral declivity that is obliquely trumcate, with the suture entire (slightly dehiscent in one species). It is distinguished from Dinoplatypus ly the absence of an elytral constriction immediately cephalad from the declivity, and by the presence of setac on the face of the male declivity:

Description.-Metasternum and metepistemum without an impression or armature for reception of the metatibia. The male elytral declivity is broadly; obliquely truncate, not preceded hy a transverse constriction; the suture is entire (one slight exception); the declivital face is omamented by setae (either hairlike or scalelike); the costa at the base of the male declivity is oltuse to subacute, and the interstrial rows are sometimes indicated
on the upper portion．The male deelivital face is usually dull（shiming in one speceies）．

Contents．－Type－species：Platypus trm－ catipenmis Schedl．Inchuded here are the Platypi sulcato－trumcati（5 spp），Borneo，New Guinea）and Platypi truncatipermi（ 6 spp ． Borneo，Sumatra，New Guincal of Schedt （1972：211－212）．Of these，only platypoides （Browne），trancaticaula（Schedl），truncatigra－ nosus（Schedl），and truncotipemmis（Schedl） were at hand for study：

Distribution．－Malaya to New Guinca．

Dinoplatypus，n．g．

Di．ig vosis．－The genus Dinoplatypus is distinguished from Peroplatypus Wood，above， by the subvertical．obliquely truncate male elytral declivity with the sutural apex modest－ ly to very strongly，very broadly emarginate． and with the subsertical face moderately to strongly concave，brightly shining，and with－ out punctures or setae；the upper margin of the male declivital face is usmally acute，and there is a distinct constriction immediately cephalad from its base．

Description：－The male elytral declivity is subvertically truncate；its upper margin is acute；its face is broadly，subcireularly con－ cave；its surface is brightly shining impome－ tate，glabrous，with a substantial，often elabo－ rate，emargination at the sutural apex．The male declivity has a distinct，tramserse con－ striction immediately cephalad from its base． The female pronotum has numerous myectan－ gia pores．

Contents．－Type－species：Platypus cupu－ latus Chapuis．Induded here are the Platypi cupulati（29 spp．）of Schedl（1972：20S－21I）．

Distributiox－Ludia and Japan to Aris－ tralia and Mieronesia．

Crossotarsus Chapuis

The genus Crossotursus Chapuis，as treat－ ed here，is essentially as listed in Schedl （1972：96－112）and Wood \＆Bright（c1992）． although it may heeome necessary to add to it all or part of Carchesiopygus：Schedl（not seen） and Crossotarsimulus Schedl（not seen）．

Description－Crossotursus is a member of the Platypodini，near Platypus，except that （key couplet 19）the protibiace are sexually dimorphic（male with the usual transwerse rugae，female with most of the basal rugae replaced by confused gramules）．The mate
declivity is moderately reduced to almost absent 〈a row of dorsorentrally flattened spines arms its basal margin）：the ablemen ascemels rather strongly to meet the apes．The males of several of the larger species hate a romuded nodule on the metepistermum．The female pronotmon has munerons myectangia pores．
 ing gromp）s as listed bey Schedl（19－2：96－112）： Crossotarsi alternante－depressi（1 ヶp．，Philip）－ pines），Crossotursi ansulati（4 spp．．Indial． Japan，New Guineal，Crossotarsi barbati（II sppp．Malaya to Philippines and dustraliat， Crossotarsi coleoptrati（12 spp．，India to Japam and New Guinea），Crossotarsi subdepressi（20） spp．，India to Tawan and Australia），Crosso－ tarsi gemuini（20 spp）．India to Philippines and Australia）．Crossotursi nitiduli 4 spp ．，\abalaya to New Cumea），Crossotarsi rentricorni（1t sppe，India to Japan and New Gninea）， Crossotarsi incertae sedis（3 spp．a Java to Philippines．I sp．of doubthul affinity in Africa）．

DIstrabltocハ．—India to Japan and Ans－ tralia，externedentatus has extended its range throngh modern commerce to Hawaii and has been intercepted in additional areas．

Truchyostus Schedl

This semus is allied to Crossotarsus．but it is confined to Mriea and Madagatear：

DEscriptos．－Truchyostus is allied to Crossotarsus as indicated by the similarly sex－ wally dimorphic protibiae．The male chytral declivity is usiatly comex rardy flattemed）． erens rounded，never servate or dentate．and the sirfice is usuall dull．The venter of the abdomen ascends little，if and：to meet the chy－ trad apex．Mecetangia pores atre never present on the pronotim．

Contrats．－Included here ate the 1：3 speceies from tropical Wrical and Waddagescar that were listed by Schedl 19：－2：SS－ל9 and Wood a Bright（el9y2）．

Dıstraba Tros．－－Tropical Sricat and Manda－ gatcear：

Teotrachyosthes Browne

The gemus Veotrachyostus Browne：as med here is essentially as listed in Schedl （1972：90－92）and Wood ix Bright cl992） except that Platypues quadritolnus Blandford is here transferred back to Platypus．

DESCRIPTION.-The sexually dimorphic protibiae of Neotrachyostus suggest a close relationship to Trachyostus. The male elytral declivital sunface is never dull; it is variously impressed or excavated, with the ventrolateral margin serrate, dentate, or emarginate; its base is variously carinate or armed by spines. The female pronotum has one pair of mycetangia pores.

Contents.-Schedl (1972:92) and Wood \& Bright (c1992) list 14 species.

Distribltion.-Southern Mexico to Brazil.

Platyscapulus Schedl

The genus Platyscapulus Schedl (=Platyscapus Schedl 1939:397, 399, Costaroplatus Numberg 1963:109) contains a group of American species formerly assigned to Platypus. Platyscapulus is here removed from synonymy with Platypus and is given full generic rank.

Description.-As defined here Platyscapulus contains those species formerly assigned to Platypus that have the metaster-num-metepisternum impression armed on its anterior margin by a series of small spines and also have a pair of spines that arm visible male abdominal sternum 5 (Schedl 1972:195, fig. 49). The male elytral deelivity is usually short, steep, and has the ventrolateral angles rather poorly developed, projecting little, if any. The male elytral interstriae are usually carinate on the posterior half of the dise. The pronotum never has mycetangia pores in either sex.

Contents.-Included here are Schedl's (1972:235) Platypi costellati (I3 spp., S Mexico to Brazil), Platypi abdominales (Sehedl 1972: 195) (3 spp., Costa Rica to Guyana), and Platypi neocostellati (Schedl 1972:195) (2 spp., Venezuela and Guyana to Brazil).

Distrabltion.-Southern Mexico to Brazil.

Myoplatypus, n. g.

Diacivosis.-This genus is distinguished from the closely allied Oxyplatypus Wood, below, by the occurrence of a pair of large spines on male visible abdominal sternum 4, and by the absence of spines on other sterna.

Description.-This genus is a member of the Platypodini that have a motasternummetepisternum impression armed by small spines and a transverse pair of spines on male visible abdominal sternum 4. The pronotum
usually has one pair of mycetangia pores in the female; they are sometimes present in the male.

Contents.-Type-species: Bostrichus flavicornis Fabricius. Included here are flavicornis (Fabricius) (S USA to Cuba) and Schedl's (1972:220) Platypi bilobati (5 spp., Mexico to Costa Rica).

Distribution.-Southeastern USA and Cuba to Mexico and Venezuela.

> Oxoplatypus, n. g.

Diagnosis.-This genus is a member of the Platypodini near Platyscapulus. It is distinguished from Platyscapulus by the presence of a transverse pair of large spines that arm male visible abdominal sternum 3 , and by the absence of spines on sternum 5 .

Description.-This genus is established to contain one known species. It is a representative of the Platypodini with the metaster-num-metepisternum impression armed by small spines on the anterior margin, and male visible abdominal sternum 3 is armed by a transverse pair of large spines. The female pronotum bears one unusually large pair of mycetangia pores; the male pronotum is without pores.

Contents.-Type-species: Scolytus quadridentatus Olivier. One species is known, quadridentatus (Olivier) (=blanchardi Chapuis, disciporus Chapuis).

Distribution.-Southeastern USA to northern Mexico, in Quercus spp.

Platyphysus, n. g.

Diagnosis.-This genus is a member of the Platypodini having the metasternummetepisternum impression armed on its anterior margin by small spines, but none of the visible male abdominal sterna is armed by spines. Platyphysus is distinguished from allied genera by the strongly convex, steep male elytral deelivity that is almost unarmed, and by the horizontal venter of the abdomen with visible sternum 5 inflated, its posterior one-fourth ascending rather abruptly to meet the apex of the elytra.

Description.-In this genus visible male abdominal sternum 5 is strongly inflated (moderate in female), with its posterior onefourth ascending to meet the apex of the elytra. The elytral declivity is convex, steep, and descends further than in related genera; male
armature is sparse and rather small. The metasternmometepisternum impression is armed by small spines as in related genera.

Contests.-Tipe-species: Platypus obtusus Chapuis. Also included here are Schedll's (1972:157) Platypi declici (4 spp.. Brazil) and Platypus pouteriae Wood.

Distribution.-Costa Rica to Venezuela. in Pouteria spp.

Megaplatypus, 11.g.

Dag.vosis.-This large group of American species, formerly placed in Platypus, is diverse and is distinguished with some difficulty: From Euplatypus Wood. Below; it is distinguished by the more poorty formed and much less strongly produced posterolateral angles of the male elytra (key couplet 31): one or two pairs of small denticles sonetimes amm the apical margin between these angles. Mycetangia pores are uncommon (female) or rare (male) lout may consist of one pair or a pair of clusters of pores (perhaps 4 to 12 on each side).

Description.-This is a genus of Platypodini having the metastermm-metepistemum impression armed by small spines; they lack spines on the visible male abdominal stema. The male declivity descends at least half the distance to meet the abdomen, its lateral angles are rather poorly produced (usually they do not exceed the apex of the suture), and the apical margin between these angles sometimes is armed by one or two pairs of small denticles. The pronotum usually is without mycetangia pores, but one pair or multiple pores are sometimes present (particularly in the female).

Covtexts.-Type-species: Platypus dentatus Dalman. Also inchoded here are Schedl's (1972:235-242) Platypi plicati (52 sppo.. S Mexico to Argentina), Schedl's (1972:18(6-1s9) Platypi discoidales (4 spp., S Mexieo to Brazil), Schedl's (1972:1S.t) Platypi punctatosulcati (1 sp ., Cuatemala to Pamama). Schedl's (1972:229) Platypi psendocandati (4.spp.. Guyana to Brazil), Platyphs mudatus Wosod (Colombia), P. permudus Schedl (Coyana), and P. simpliciformis Wood (Costa Rica).

Distribltios:- Mexico to Argentina.

Euplatypus, n. ©

Dagiosis.-This genus is distinguished from Megaplatypus Wood, above, be the much
more strongly prodneed ventrolateral angles of the mate dectivity that execed the leved of the sutural apex.

DFs(RIPTAN.-This gemm is a member of the Platypodini haning the metasternmonmetepistermon impression anmed on its anterior margin los small spines. None of the visible abdominal stema are armed by epines. The male ventrolateral angles of the deedisit? are extended candad intes a pair of proceesses that exceed the sutural apex tapicess of each of these processes are mamally bi- or tridentate. and never with serrations or dentieles on the apical margin between these processes). The pronotmon often has one pair of mycetangia pores in the lemale or in both sexes.

Covtexts--Type-species: Bestrichus perallelus. Fabricius. Also included here are Schedl's (1972:230-234) Platypi trispinati (3.3) spp., I'SA to Arematina, Madaquscar: (ropical Africa, Australia, Sri Lanka, ete.) and schedl's (1972:203) Platypi candali (19 spp).. S Wexico to Argentina). Some of the coudati gronp, fiom tropical America latek the small spines that arm the metasternmometepistermmin impression in one or looth sexes.

Distrabetion. -Southem L'S. to Areontina, a few in Africa, Madagascar: Euplatypus parallelus (Fabricius) has been carried through modern commeree worldwide in tropical areas (Wood of Bright elyy? : 1664-1665). It hats also been intereepted in Anstralia and India in recent months.

Baiocis Browne

The qeemis Batecis Browne as treated here is essentially as it was established by Browne (1962:6.51) and listed bl Woord is Bright (c-1992). except that Platypuis kuntzeni Schedl apparently belongs in Crossotarsus.

DFSCRIPTON.-This Gemus is at member of the Platypodini havine the metasternmonmetepistermmon impersion armed on its anterior margin ly small spines. The speceice are small, wathi retionlate. wer slemeder: "ith sexual dimerphism ohsemre. The male chatral dectivit! is marmed and it desecombe feedils. if at all. The visille mate aldedeminal sternmo 5 is concance. Wecetangia pores. when present on the pronotum, are numeroms.

Fipiplatypus, n. s.
 the Platypodini having the metasternmo
metepisternam impression armed by smatl spines on its anterior margin. It is distinGuished in the mate from Megaplatypus Wood, dbove, and Teloplatypus Wood, below, by the mique structure of the male elytral deedisits.

Drse Ruptox.-This gemus is allied to Teloplat!pus but is distinguished by the presence of two pairs of semations on the ventrolateral margin of the male elytral dectivity; these serrations are usually connected by a carina; the median pair (often both pairs) is on the apical margin. One pair of mecetangia pores is often present on the female pronotum or on both sewes.

Contevts-Type-species: Platypus descoptor Wood. Asos included here are Platypus annexus Wood, P. applauatus Wood, P. deplanutus Wood, P. engestus Wood, P. eximius Wood, P. filaris Wood, P. jamacensis Bright, P. secus Wiood. P. spectus Wood, P. vegestus Wood, and apparently most of Schedl's 1972:21:3-214) Platypi complamati.

Distrabletoon-Costa Rica to Brazil.
Teloplatypus, n. . .

DIMovons.-This genus is distinguished from Epiplatypus Wood, above, by the mique structure of the male elytral declivity as defined in the aloove key to genera.

Description-This genus is a member of the Platypodini having the metasternummetepistermm impression armed on its anterior margin by small spines. The male elytral dectivity has only one pair of serrations on the ventrolateral margin, with a carina extending dorsadel from this spine to a spine on interstriace 3 located at the base of the declivity; the declivity descends only slightly, and its basal margin is msually amed by small spines on interstrian 1. 3. and 5. Meretangia pores are never present on the pronotum in cither sex.
(o) \Th \backslash rs-Tipe-species: Platypus concimmes Blandford. Ineladed here is Schedl's 1972:21.5-219 Platypi torminati (16 sp p.$)$.).

Datrabtoon.-Sonthern Mexieo to Arsentina.

> Cylindopalpus Strohmerer

Thee semus Cylindropelpus Strohmeser, as treated here, is essentially as listed bon Browne
 Wood de Brieht (cl992).

1) Fas Raptoti-This gemos is a member of the Platypodini having the anterior margin of
the metasternmm-metepistemum impression continuously costate. The abdomen ascends gradnally and moderately to meet the elytra. The male visible abdominal sterna are transversely contex, stemum 2 is not enlarged or modified. The male elytral declivity is convex; moderately steep, and with tubercles small and inconspicuons. The female froms is broad and shallowly to moderately concave.

Contents.—Wood \& Bright (c1992) list 14 species.

Distrabution.-Africa to Madagasear.

Triozastus Schedl

The genus Triozastus Schedl, as treated here, is essentially as listed by Schedl (1972:246-248) and Wood \& Bright (c1992). There appears to be considerable confusion in this genus on how to interpret individual and populational variability into taxonomic categories.

Description.-This genus is distinguished from Cylindropalpus Strohmever by the male abdomen being broadly concave (both transversely and longitudinally) from the base of visible sternum 1 to the apex of 5 , this concave area being often elaborately pubescent. The male elytral declivity descends only slightly, and its basal margin is armed by spines; interstriae 1 near its apex diverges laterad moderately then descends slighty before its apex. The female frons bears a pair of small to rather large concavities in the lateral areas between the bases of the mandibles and the antemnal insertions.

Contents.—Wood \& Bright (c1992) list 7 species.

Distribution.-Tropical Africa.

Mesoplatypus Strohmever

As treated here, the genus Mesoplatypus Strohmeyer is hased on Wood \& Bright (c1992) and on Schedl (1972:165-168).

Description.-This genus is a member of that portion of the Platypodini having a costate anterior margin of the metasternmmmetepisternom impression and having visible male abdominal sterna 2, 3, or 4 armed by spines. In some members male sternum 2 bears at least a partial transverse carima that is reminiseent of Dolopyysus. The female froms is concalvely impressed (in all spectes?).

CONTEXTS.-Wood \& Bright (e1992) list 17 species.

Distribetios.-Tropical Africal.

Doliopyisus Schedl

The gemas Doliopyisus Schedl (=Scutopygus Numberg, Pygodolius Numberg, Mixopygus Numberg, Mesopysus Nimberg), as treated here, is essentially as listed by Sehedl (1972:143-164) and by Wood at Bright (c1992).

Description-This gemus is allied to Mesoplatypus Strohmeyer but is sharply distinguished by characters of the mate abdomen. Male visible abdominal stemm, 2 has a strongly developed, transverse carina that is sometimes divided at the median line. The sternmm candad from this carina ascends abruptly in mion with stema 3,4 , and 5 to form a subvertical, strongly concave, subcircular face that functions in the remoral of frass from the gallery entrance hole. The mate declivity is reduced to obsolete; its basal margin is armed by a row of dorsoventrally flattened costae (derived from spines) that are intermpted at the strial intervals. The female frons is sariously somptured and man be elaboratety ornamented by setae in some spectes. Mycetangia pores on the pronotum are absent.

Costexts.—Wood d Bright (c1992) list 142 species.

Distribleton.-Tropical Africa.

Literatl re Cited

BlackMin, V. W. 194. A mew gemus and species of Colcoptera from Panama. Entomological Society of Washington. Proceedings 46(3):76-80, pl. 7. ligs. 1-5.
Browne. F. C. 1955. Synomymy and descriptions of some oriental Scolytidae and Platepordidar Coleopterat. Sarawalk \husemm fournal 6:343-3:3.3.
. 1962. Taxonomic notes on Platypodidate (Coleopteral. Annals and Magazine of Natural Histors. ser. 13, 4:641-655 (19661).

197]. Austroplatypus, a new genus of Platepodidae Coleoptera), infesting living Fiucalyptus trees in Anstralia. Commonweatth Forestry Ruvew 50:49-50. . 1972. Lamza of the principal ()ld World genera of Platypodinae Coleoptera: Platypodidac Royal Entomological Socicty of London. Transactions 124:167-190.
Chaptis, F. 1s65. Monographie des Ilatypodides. Densalin, Liege. 344 pp .
Crowson, R. A. 195.5. The natural classification of the families of Coleoptera. \athamiol Lsoyd d. Co.. Lomdon. 15 T pp).

196is. I matural clansificatom of the lamalue of Conleoptera. Edition 2. I: II Clase? I de . Itapton. Bingland. 19.5pp.e 21.3 fisu.
 ta et ductat secondum classer. ordimes. Lemete
 dereriptionibus. Prolt. Halinate. wol. 1, pt. 2. 5.35 pp).
HI RBST. J. F: WI. 1793. Vatursyotem aller behamitom mund anslandiselon lasektenn als cime fortectome der von Bulfonschen Daturgeschichte. Der Kaleer wol 5 392 pp.. 16 phs.
Hopkilc. A. D. B909. Contributions toward a memmeraph of the seolstid beetles. 1. The wemus Dendrostennes. (.S. Department of Igriculture. Burean of Entomolegy. Technical Bulletin 151.16.1 pip... Splo.. 9 figs.
1911. (ontributions toward amonograph of The bark wece ils of the germe Pissodes. I' S Department of Agriculture. Burean of Entomology. Tiedo-

 mom secondlum ordinem naturalem in fammian disposita, inconibus cacmplisçue plurimius (xplicata. P'aris. Vol. 2. 250 ppr.
Robberts. 1f. 1993. Diapodini ol Papua Vow (:umea Platypodidate). Bishop Wasemm Occasional Papers 35:1-39.
 Iorbeitung der Ilatyondidae. Internatomal (omgress of Entomologs, Proceedings a $1.37 \overline{-}-160$. 1962. Fam. Coptonotidiar. Coleoptera. Cemera Insectorum de P. Witsman Vorempins. baters. Fiascicl(-21.5. 13 p p).. 1 pl .

19:2. Momographio der Familit Platypordidae Colcoptera, W. Jumk. Denllatis. $1+322$ plp.
Sill (kiki), II: F: 14.10. The British Coleoptera delun at ed br W: J. Spry. 53 ppo.. gt fies. Repronted in 14(il
 4.1:1-26 in II. Junk and S. Sthenklins. (oderplemorum Catalogus. Berlin.

 pp... I pl.

191 1 I) Coleoptera. Fam Platspodidae. P Witsman. Cenneal Lusectormen. Bravelles. Iive 16:3 $5.5 \mathrm{p} . .12 \mathrm{p}$, 12.
 logiceal data on an umanal (.cotral bmerican lowthe Coleopherat Platupodidan Civeal Basin Soturahos 17:10:3-10. 1.
1946. \ew records and spectes of \emtoppeat
 26: $15-70$.
 and seolstalan Colsopterad (ive at Bawin Xaturalist 33:7- ! !
1942. The bark and amborond lowethen of tomth

 (3. 1.359 pp.
 didate Coleoptera Cercat Basm \aturallat Demomer 10. 126 pp .
 seostidae and Platypodidax Coleoptera), part 2: tavomenmic incles. (incat Basin Naturalist Memoirs 13.10st-1210. Vol. 2. (\%op) righted 13 Derember 1992 by Brichan loumg [nitersit!].

As an aid to the interpretation of the above changes, the following list of valid names in Platypodinae is presented. Only valid generic and specific mames are inchded. Synomyms and other subfamilies and genera not included here are listed in Wood \& Bright (1992).

Platypus

androuesi Strohmever
apicalis 11 hite
arduns. schedl
arisemmensis \uravama
arrogans schedl
buinlus Sche dil
Dulanocarpuss behedl
barhatulus bebed
beilschmidiae schedl
biconiger schedl
biformis Chapuis
bihamatus schedl
sarmophullatus Scdedl
conjunctus schedl
cormutus Scheed
crassus Strohmener
curtus Chapuis cylindrus (Fabricius)
darjecelingensis Scheell
diffidens Schaedl
dignus schedl
effetus solvedl
cmeleni schedel
enormis schedl
freicticestis schedl
fulmekischedl
seminatus Chapuis
gerstarckert (happuis
gratyi schedl
hinchum hani scheedl
hirtellus Sclacd
histrix holsedl
herrishensis Mumatama
hylnidus Solved
impresstis strolanceser
ineromis Samperen
insuluriv Steolanemen
intermedins scluedl
fansemи (hapmis
furencus solluatl
kedshomeme Checell
kitushucnsis \1ura ande
Klapper ricto sclue dl
latcededin is soluedl
lineellows holoced

Innatipemis. schedl

Imifer Schedl
luzonichs Schedl minutissimus Schedl mjohergi schedl modestus Blandford morigerus Schedl multiporys Schedl neoplicatus Schedl niijimai Murayama obiusipenmis Schedl omissins Scleedl apacielectiv is Schedl opacifromes Schedl orientalis Strohmeyer ormaticeps Schedl oralus Strohmeyer phangensis Schedl partitus Schedl pasmiate Schedl pedum Sampson permulus Schedl perrisi Chapuis picinus Schedl politus Chapuis porecllus Schedl pateritus Schedt pseudocurtus. Schedl paseulosselysi Schedl puerulus schedl quadricinctus Schedl quecnstandi Schedl quercicola Schedl quercimes Schedl quercitorus Murayama rimulosus: Schedl rufeseons Strohmejer semn).somi (Scheedl) schenklingi (Strohmever) secretus Sampson selysi Chapuis semicrmis Schedl semigramosus (Simpson) semiopacus Strohmeyer setaceus Chapuis sexponts (Schedl) sexualis Beeson shillongensis Schedl signtulus Chapuis simulans: Schedl sinensis bchedl singalangensis Schedl spectabilis Schedl spinulosus Strohmeycr striatopunctatus Schedl subdermessus schedl subgranosus Schedl sulplicatus Schedl subsectefus Browne subsidarius sched subsimilis Schedl sufforliens Smonson tasmumions sched taxicomis schedl tatfah)asi Sche dl tomellus schedl terelbrans schedl
uniformis Schedl
utibilis (Schedl) rerelunatus: Beeson) resculus schedl rethi Strohmeyer retulus Schedl wehberi behedl uestuoodi Chapuis

Treptoplatypus abietis (Wood) australis (Chapuis)
bifferuosus (Schedl) cirrulicaula Browne fischeri (Strohmeyer) micturus (Schedl) multiperus schedl uualriporns Schedl solidus (Walker) subaplematus (Schedl) trepruatus Chapuis)
wilsomi (Swainc)
Peroplatypus
abruptus (Sampson)
fallex (Schedl)
Imosi (Schedl)
I cucasensis. (Browne)
oblienucoudatus (Schedl)
platypoides (Browne) retusipemeis (Schedl) semisuleratus (Schedl)
truncaticauda (Schecll) truncatigranosus (Schedl)
truncatipermis (Schedl)

Dinoplat!pms

acutidentatus (\uravama)
aduncus (Chapuis)
ugnatus (Schedl)
algosus (Scliedl)
anthocephali (Schedl)
binnens (Blandford)
calamus (Blandiord)
carus (Strohmeyer)
cherrolati (Chapuis)
cupulatulus (Schedl)
cupulatus (Chapuis)
decens (Sampson)
falcatus (Strolmesver)
forficula (Chapuis)
hamatus (Blandford)
lepidus (Chapuis)
lumiger (Motschulsky) malaisei (Schedl) maritimus (Scliedl) normadenae (Browne) omega (Schedl) pallidus (Chapuis) piniperrla (Sche-dl) psenulocupulatus (Schedl)
temuis (Murayanaa)
tenuissimus (Schedl)
tetracertus Beeson)
umbraticus (Schedl)
turcinutus (Blandford)

```
Ciossutarvas
```



```
Carchesionutoles
```



```
Cirossotarsimulus
    Sor. W%od & Bright clyy)2 1210
Trachyostus
    sowWood & Bright cly9)2:1210-121:3
Meotrar/ayostus
    Ser Wood d Briglat (19)%2:121:3-1211
Platyscril)ulus:
    whrlitulus Wisod
    ubrlitus Sclledl
    c(arimulatuc) (Hatpuis
    clumulis Wood
    rluniculus \1%os}
    clumis Wood)
    costellatuss bolmedl
    fromtalis Blandford
    imitatrix Scleedl
    mamus selocdl
    occipitis Wood
    mulehe'lues ( Imap)uis
    pulcher Chapuis
    pusillimus Chapuis)
    stuenefelti Vunberer
    subabolitus Schedl
    turgifron.s Schedl)
    mulmosus: Scluedl
```

Myophut!!pus
bijorus Blandford)
brevirornis Wood
comucxus Wood
flarirornis Fabricius
promextes Wood
scouexas lloood
Ox(q)lat!|nus

Platyphlysus
cemt cxus schedl
latieollis Chapuis
ohtusus: Chatpuis
pouteriat IVood
renfabri hecichaude
Mersit) latypus
artcrarinatus bale
atterntus Sollocell
aurioularis (hapmen
anrifus (lapuiv
betess Chatpuis
bicornis \unleres
biek'ns scheell
binerlulus (hitu)uis
broticaulatus Nunberes
earacemis sthedl
cariniter belwedl
chiripuensis 11 orod
romecilutus Sclucell
comscopuells schedll
contructus (hapuis
(onti)cemes selacell
cort idens schedl
darlinstoni hescharelt
dentetres Datoman
desulter stredl
delmollei (hajuis duluctus (hapuis discicollis Chapuis discoideliss schecll distimguenulis schedl| dolobrutus Blandiond durus Schedl) espegnis schecll clongatus (:hapuis) cequadorensis sobedl) (xurutus Blandford) exitulis Wood)
exitiosus Schedl
flexionses Schedl) forsulatus Chapnis, frasesnes scheld. fuscus (Chapuis) isodmami Blandford granarins scheoll) grexalis sched hotlhausi schedl) ignotus Schedl) impercatus (Blandiond) insidiosns 'Schedl) insignatus Schodl intiolatus scheodl) irresularis 'schecll irrepertus schedl irruptus schedl) jelskii (Numbergy
komincki Chapmis laforter (h hapuis latreillei Claputis) limbatus: Chapmis) lirations Weosd liratus Blandliord luridus (Chatu)uis) malignus schedl mar_zinatus (:hapuis mututus (hapmis nen arroulcandrudei Varedia wiglectus Selvedl miteduollis Selocdl

- undulus. IV oerl mhiterutus Blandlend way unterlis (\%apuis dukn (latume fur himidulus beloedl mamar_nutus botedl parmulatm helucall pernudus bu liedl pertumas) mblear porrectus) (hapmis psertulodignatus scledl psemuloplicatus sclaedl ctuarsituss seheedl (hain uerostutus (hap)uis onevi thedl
raucus (Schedl)
reichei (Chapuis)
robustus (Chapuis)
sulvini (Blandlord)
schmidti (Chapuis)
sewostatus (Chapuis)
simpliciformis (Wood)
sobrinus (Schedl)
suatifor (Schedl)
suboblitaratus (Schedl)
subsulcalus (Chapuis)
(iviosensis (Rejchardt)
tuberculatus (Chapuis)
umbonalus Blandford)
ursimus (Schedl)
ursus (Schedl)

Euplat!pus

acequalicinctus (Schedl)
alicmus (Schedi)
alternans.s (Chapuis)
amenstatulus (Wood)
(msqustatus Chapuis)
(mgnstioris (Schedl)
arancariae (Schedl)
areolutus (Schedl)
bellus (Schedl)
bilohatus (Strohmeyer) compositus (Say)
contextus (Schedl)
coromatus (Schedl)
costaricensis (Schedl)
cribricollis (Blandford)
cuspidatus (Schedl)
decorus (Sched1)
disnutus (Schedl)
dimidiatus Chapuis)
dissimilis (Chapuis)
dissipabilis (Schedl)
efferatus (Schedh)
hadgi Chapuis)
hiems (Chapuis)
hintzi (Schaufuss)
immumis (Schedl)
laminutus (Schedl)
longior (Wood)
longins: (Wood)
longulus (Chapuis)
madagascariconsis (Chapuis)
minusculus (Schedl)
mulsanti Chapuis)
otiosuses (Schedl)
parallelus (Fab)ricius)
petfulus (Chapuis)
permimicus (Schedl)
pertusus (Chapuis)
pini (Ilopkins)
porosiss (Blandiord)
pssudolongulus (Schedl)
pulicuris (Chapuis)
roberli (Chapuis)
rugesiffoms (hehedl)
semtacruzensis (Vntchler)
segnis (Chapuis)
simpliciformis (Wood)
sinuostes Chapuis)
solutus（Cluipuis，
striatus Chapuis）
tragus（Schedl）
tricuspidatus（SchedI）
trisphimatulus（Schedl）
trispinatus（Scliedl）
trumcatus Chapmis）
ricimus（Blandford）

Batocis
See Wood d Bright cl992：1215－121\％

Epiplatypus

almexus Schedl）
almexus（Mood
a）plamatus（Wood）
brasiliensis Nunberg）
complamatus（Scheedl）
deceptor（Wood）
deplamatus（Mood）
discolor（Blandford
cugestus（Mood）
eximitus（Wood）
filaris（Wood）
gradelompensis（Sclacell）
jumaicensis（Bright）
nudus（Scherll）
permudus（Schedl）
secus．（Wood）
spectus（Wood）
regestus（Wood）

Toloplatymes

brommeus Chapuis）
carinifions（Schedl）
collatatus（Scheoll）
comeinunulus Blandford
emixus Sclsedl
（xcisus（llap）uis
lumilis Chapuis
interessums boledl
matrcielus Blanelfond
ornatus．Scleedl
pallielipermis Blandfored
percemis beloedl
perdiligens Scleedl

strialopermis Scheed
subitarius Sclacell）
ustulatus Chapuis
Cylindropalpus．
Sec Whod di Bright c．1992：1217－1219

Triozasfus
Sec 1 food do Bright cul992：1219－1221
Mesop）latypus
See 11 orod \＆Bright c－19y2：122］－122：3
Doliopyerts
Ser Wiood d Bright c．1992：1223－1240
Spathicramuloides
See Wood d Bright clyge：1210
Denelroplatypus

[^0]:

